
huey Documentation
Release 0.4.9

charles leifer

January 02, 2016

Contents

1 Huey’s API 3
1.1 Installing . 3
1.2 Upgrading . 4
1.3 Getting Started . 5
1.4 Consuming Tasks . 14
1.5 Understanding how tasks are imported . 16
1.6 Troubleshooting and Common Pitfalls . 17
1.7 Using Huey with Django . 18
1.8 Huey’s API . 20

2 Indices and tables 29

i

ii

huey Documentation, Release 0.4.9

a lightweight alternative.

• written in python

• no deps outside stdlib, except redis (or roll your own backend)

• support for django

supports:

• multi-threaded task execution

• scheduled execution at a given time

• periodic execution, like a crontab

• retrying tasks that fail

• task result storage

Contents 1

huey Documentation, Release 0.4.9

2 Contents

CHAPTER 1

Huey’s API

from huey import RedisHuey, crontab

huey = RedisHuey('my-app', host='redis.myapp.com')

@huey.task()
def add_numbers(a, b):

return a + b

@huey.periodic_task(crontab(minute='0', hour='3'))
def nightly_backup():

sync_all_data()

named after my cat

Contents:

1.1 Installing

huey can be installed very easily using pip.

pip install huey

huey has no dependencies outside the standard library, but currently the only fully-implemented queue backend it ships
with requires redis. To use the redis backend, you will need to install the python client.

pip install redis

1.1.1 Using git

If you want to run the very latest, feel free to pull down the repo from github and install by hand.

git clone https://github.com/coleifer/huey.git
cd huey
python setup.py install

You can run the tests using the test-runner:

python setup.py test

Browse the source code online at https://github.com/coleifer/huey

3

http://www.pip-installer.org/en/latest/index.html
http://redis.io
https://github.com/coleifer/huey

huey Documentation, Release 0.4.9

1.2 Upgrading

With the release of Huey 0.4, there are a number of changes to the way things work. Unfortunately, many of these
changes are backwards incompatible as this was a pretty big rewrite. What follows is a list of things that changed and
how to upgrade your code.

To see working examples, be sure to check out the two example apps that ship with huey, or view the source on GitHub.

1.2.1 Invoker became Huey

Invoker was a terrible name. It has been renamed to the much-better “Huey”, which serves the same purpose. Huey
accepts mostly the same args as Invoker did, with the exception of the task_store argument which has been
removed as it was redundant with result_store.

queue = RedisBlockingQueue(name='foo')
data_store = RedisDataStore(name='foo')

OLD
invoker = Invoker(queue, data_store)

NEW
huey = Huey(queue, data_store)

1.2.2 Decorators are methods on Huey

Formerly if you wanted to decorate a function you would import one of the decorators from huey.decorators.
Instead, these decorators are now implemented as methods on the Huey object (task() and periodic_task()).

OLD
@queue_command(invoker)
def do_something(a, b, c):

return a + b + c

NEW
@huey.task()
def do_something(a, b, c):

return a + b + c

The arguments are the same, except there is no need to pass in the invoker object anymore.

• queue_command became Huey.task()

• periodic_command became Huey.periodic_task()

1.2.3 No more BaseConfiguration

Configuring the consumer used to be a bit obnoxious because of the need to duplicate information in the
BaseConfiguration subclass that was already present in your Invoker. The BaseConfiguration object
is gone – now instead of pointing your consumer at the config object, point it at your application’s Huey instance:

OLD
huey_consumer.py path.to.Configuration

NEW
huey_consumer.py path.to.huey_instance

4 Chapter 1. Huey’s API

https://github.com/coleifer/huey/tree/master/examples

huey Documentation, Release 0.4.9

Options that were formerly hard-coded into the configuration, like threads and logfile, are now exposed as command-
line arguments.

For more information check out the consumer docs.

1.2.4 Simplified Django Settings

The Django settings are now a bit more simplified. In fact, if you are running Redis locally, Huey will “just work”.
The new huey settings look like this:

HUEY = {
'backend': 'huey.backends.redis_backend', # required.
'name': 'unique name',
'connection': {'host': 'localhost', 'port': 6379},

Options to pass into the consumer when running ``manage.py run_huey``
'consumer_options': {'workers': 4},

}

Additionally, the imports changed. Now everything is imported from djhuey:

NEW
from huey.djhuey import task, periodic_task, crontab

@task()
def some_fn(a, b):

return a + b

1.2.5 Django task autodiscovery

The run_huey management command no longer auto-imports commands.py – instead it will auto-import
tasks.py.

1.3 Getting Started

The goal of this document is to help you get running quickly and with as little fuss as possible.

1.3.1 General guide

There are three main components (or processes) to consider when running huey:

• the producer(s), i.e. a web application

• the consumer(s), which executes jobs placed into the queue

• the queue where tasks are stored, e.g. Redis

These three processes are shown in the screenshots that follow. The left-hand pane shows the producer: a simple
program that asks the user for input on how many “beans” to count. In the top-right, the consumer is running. It is
doing the actual “computation”, for example printing the number of beans counted. In the bottom-right is the queue,
Redis in this example. We can see the tasks being enqueued (LPUSH) and read (BRPOP) from the database.

1.3. Getting Started 5

huey Documentation, Release 0.4.9

Trying it out yourself

Assuming you’ve got huey installed, let’s look at the code from this example.

The first step is to configure your queue. The consumer needs to be pointed at a Huey instance, which specifies which
backend to use.

config.py
from huey import Huey
from huey.backends.redis_backend import RedisBlockingQueue

queue = RedisBlockingQueue('test-queue', host='localhost', port=6379)
huey = Huey(queue)

The interesting parts of this configuration module are the Huey object and the RedisBlockingQueue object. The
queue is responsible for storing and retrieving messages, and the huey is used by your application code to coordinate
function calls with a queue backend. We’ll see how the huey is used when looking at the actual function responsible
for counting beans:

tasks.py
from config import huey # import the huey we instantiated in config.py

@huey.task()
def count_beans(num):

print '-- counted %s beans --' % num

The above example shows the API for writing “tasks” that are executed by the queue consumer – simply decorate the
code you want executed by the consumer with the task() decorator and when it is called, the main process will
return immediately after enqueueing the function call.

6 Chapter 1. Huey’s API

huey Documentation, Release 0.4.9

The main executable is very simple. It imports both the configuration and the tasks - this is to ensure that when we
run the consumer by pointing it at the configuration, the tasks are also imported and loaded into memory.

main.py
from config import huey # import our "huey" object
from tasks import count_beans # import our task

if __name__ == '__main__':
beans = raw_input('How many beans? ')
count_beans(int(beans))
print 'Enqueued job to count %s beans' % beans

To run these scripts, follow these steps:

1. Ensure you have Redis running locally

2. Ensure you have installed huey

3. Start the consumer: huey_consumer.py main.huey (notice this is “main.huey” and not “config.huey”).

4. Run the main program: python main.py

Getting results from jobs

The above example illustrates a “send and forget” approach, but what if your application needs to do something with
the results of a task? To get results from your tasks, we’ll set up the RedisDataStore by adding the following
lines to the config.py module:

from huey import Huey
from huey.backends.redis_backend import RedisBlockingQueue
from huey.backends.redis_backend import RedisDataStore # ADD THIS LINE

queue = RedisBlockingQueue('test-queue', host='localhost', port=6379)
result_store = RedisDataStore('results', host='localhost', port=6379) # ADDED

huey = Huey(queue, result_store=result_store) # ADDED result store

We can actually shorten this code to:

from huey import RedisHuey

huey = RedisHuey('test-queue', host='localhost', port=6379)

To better illustrate getting results, we’ll also modify the tasks.py module to return a string rather in addition to
printing to stdout:

from config import huey

@huey.task()
def count_beans(num):

print '-- counted %s beans --' % num
return 'Counted %s beans' % num

We’re ready to fire up the consumer. Instead of simply executing the main program, though, we’ll start an interpreter
and run the following:

1.3. Getting Started 7

http://redis.io

huey Documentation, Release 0.4.9

>>> from main import count_beans
>>> res = count_beans(100)
>>> res # what is "res" ?
<huey.api.AsyncData object at 0xb7471a4c>
>>> res.get() # get the result of this task
'Counted 100 beans'

Following the same layout as our last example, here is a screenshot of the three main processes at work:

1. Top-left, interpreter which produces a job then asks for the result

2. Top-right, the consumer which runs the job and stores the result

3. Bottom-right, the Redis database, which we can see is storing the results and then deleting them after they’ve
been retrieved

Executing tasks in the future

It is often useful to enqueue a particular task to execute at some arbitrary time in the future, for example, mark a blog
entry as published at a certain time.

This is very simple to do with huey. Returning to the interpreter session from the last section, let’s schedule a bean
counting to happen one minute in the future and see how huey handles it. Execute the following:

>>> import datetime
>>> res = count_beans.schedule(args=(100,), delay=60)
>>> res
<huey.api.AsyncData object at 0xb72915ec>
>>> res.get() # this returns None, no data is ready
>>> res.get() # still no data...
>>> res.get(blocking=True) # ok, let's just block until its ready
'Counted 100 beans'

8 Chapter 1. Huey’s API

huey Documentation, Release 0.4.9

You can specify an “estimated time of arrival” as well using datetimes:

>>> in_a_minute = datetime.datetime.now() + datetime.timedelta(seconds=60)
>>> res = count_beans.schedule(args=(100,), eta=in_a_minute)

Looking at the redis output, we see the following (simplified for reability):

+1325563365.910640 "LPUSH" count_beans(100)
+1325563365.911912 "BRPOP" wait for next job
+1325563365.912435 "HSET" store 'Counted 100 beans'
+1325563366.393236 "HGET" retrieve result from task
+1325563366.393464 "HDEL" delete result after reading

Here is a screenshot showing the same:

Retrying tasks that fail

Huey supports retrying tasks a finite number of times. If an exception is raised during the execution of the task and
retries have been specified, the task will be re-queued and tried again, up to the number of retries specified.

Here is a task that will be retried 3 times and will blow up every time:

tasks.py
from config import huey

@huey.task()
def count_beans(num):

print '-- counted %s beans --' % num
return 'Counted %s beans' % num

@huey.task(retries=3)

1.3. Getting Started 9

huey Documentation, Release 0.4.9

def try_thrice():
print 'trying....'
raise Exception('nope')

The console output shows our task being called in the main interpreter session, and then when the consumer picks it
up and executes it we see it failing and being retried:

Oftentimes it is a good idea to wait a certain amount of time between retries. You can specify a delay between retries,
in seconds, which is the minimum time before the task will be retried. Here we’ve modified the command to include
a delay, and also to print the current time to show that its working.

tasks.py
from datetime import datetime

from config import huey

@huey.task(retries=3, retry_delay=10)
def try_thrice():

print 'trying....%s' % datetime.now()
raise Exception('nope')

The console output below shows the task being retried, but in between retries I’ve also “counted some beans” – that
gets executed normally, in between retries.

10 Chapter 1. Huey’s API

huey Documentation, Release 0.4.9

Executing tasks at regular intervals

The final usage pattern supported by huey is the execution of tasks at regular intervals. This is modeled after crontab
behavior, and even follows similar syntax. Tasks run at regular intervals and should not return meaningful results, nor
should they accept any parameters.

Let’s add a new task that prints the time every minute – we’ll use this to test that the consumer is executing the tasks
on schedule.

tasks.py
from datetime import datetime
from huey import crontab

from config import huey

@huey.periodic_task(crontab(minute='*'))
def print_time():

print datetime.now()

Now, when we run the consumer it will start printing the time every minute:

1.3. Getting Started 11

huey Documentation, Release 0.4.9

1.3.2 Preventing tasks from executing

It is possible to prevent tasks from executing. This applies to normal tasks, tasks scheduled in the future, and periodic
tasks.

12 Chapter 1. Huey’s API

huey Documentation, Release 0.4.9

Note: In order to “revoke” tasks you will need to specify a result_store when instantiating your Huey object.

Canceling a normal task or one scheduled in the future

You can cancel a normal task provided the task has not started execution by the consumer:

count some beans
res = count_beans(10000000)

provided the command has not started executing yet, you can
cancel it by calling revoke() on the AsyncData object
res.revoke()

The same applies to tasks that are scheduled in the future:

res = count_beans.schedule(args=(100000,), eta=in_the_future)
res.revoke()

and you can actually change your mind and restore it, provided
it has not already been "skipped" by the consumer
res.restore()

Canceling tasks that execute periodically

When we start dealing with periodic tasks, the options for revoking get a bit more interesting.

We’ll be using the print time command as an example:

@huey.task(crontab(minute='*'))
def print_time():

print datetime.now()

We can prevent a periodic task from executing on the next go-round:

only prevent it from running once
print_time.revoke(revoke_once=True)

Since the above task executes every minute, what we will see is that the output will skip the next minute and then
resume normally.

We can prevent a task from executing until a certain time:

prevent printing time for 10 minutes
now = datetime.datetime.utcnow()
in_10 = now + datetime.timedelta(seconds=600)

print_time.revoke(revoke_until=in_10)

Note: Remember to use UTC if the consumer is using UTC.

Finally, we can prevent the task from running indefinitely:

will not print time until we call revoke() again with
different parameters or restore the task
print_time.revoke()

1.3. Getting Started 13

huey Documentation, Release 0.4.9

At any time we can restore the task and it will resume normal execution:

print_time.restore()

Reading more

That sums up the basic usage patterns of huey. Below are links for details on other aspects of the API:

• Huey - responsible for coordinating executable tasks and queue backends

• task() - decorator to indicate an executable task

• periodic_task() - decorator to indicate a task that executes at periodic intervals

• crontab() - a function for defining what intervals to execute a periodic command

• BaseQueue - the queue interface and writing your own backends

• BaseDataStore - the simple data store used for results and schedule serialization

Also check out the notes on running the consumer.

Note: If you’re using Django, check out the django integration.

1.4 Consuming Tasks

To run the consumer, simply point it at the “import path” to your application’s Huey instance. For example, here is
how I run it on my blog:

huey_consumer.py blog.main.huey --logfile=../logs/huey.log

The concept of the “import path” has been the source of a few questions, but its actually quite simple. It is simply the
dotted-path you might use if you were to try and import the “huey” object in the interactive interpreter:

>>> from blog.main import huey

You may run into trouble though when “blog” is not on your python-path. To work around this:

1. Manually specify your pythonpath: PYTHONPATH=/some/dir/:$PYTHONPATH huey_consumer.py
blog.main.huey.

2. Run huey_consumer.py from the directory your config module is in. I use supervisord to manage my huey
process, so I set the directory to the root of my site.

3. Create a wrapper and hack sys.path.

Warning: If you plan to use supervisord to manage your consumer process, be sure that you are running the
consumer directly and without any intermediary shell scripts. Shell script wrappers interfere with supervisor’s
ability to terminate and restart the consumer Python process. For discussion see GitHub issue 88.

1.4.1 Options for the consumer

The following table lists the options available for the consumer as well as their default values.

14 Chapter 1. Huey’s API

http://supervisord.org/
https://github.com/coleifer/huey/issues/88

huey Documentation, Release 0.4.9

-l, --logfile Path to file used for logging. When a file is specified, by default Huey will use a rotating file handler
(1MB / chunk) with a maximum of 3 backups. You can attach your own handler (huey.logger) as well. The
default loglevel is INFO.

-v, --verbose

Verbose logging (equates to DEBUG level). If no logfile is specified and verbose is set, then the
consumer will log to the console. This is very useful for testing/debugging.

-q, --quiet Only log errors. The default loglevel for the consumer is INFO.

-w, --workers Number of worker threads, the default is 1 thread but for applications that have many I/O bound
tasks, increasing this number may lead to greater throughput.

-p, --periodic Indicate that this consumer process should start a thread dedicated to enqueueing “periodic” tasks
(crontab-like functionality). This defaults to True, so should not need to be specified in practice.

-n, --no-periodic Indicate that this consumer process should not enqueue periodic tasks.

-d, --delay When using a “polling”-type queue backend, the amount of time to wait between polling the backend.
Default is 0.1 seconds.

-m, --max-delay The maximum amount of time to wait between polling, if using weighted backoff. Default is 10
seconds.

-b, --backoff The amount to back-off when polling for results. Must be greater than one. Default is 1.15.

-u, --utc Indicates that the consumer should use UTC time for all tasks, crontabs and scheduling. Default is True,
so in practice you should not need to specify this option.

--localtime Indicates that the consumer should use localtime for all tasks, crontabs and scheduling. Default is
False.

Examples

Running the consumer with 8 threads, a logfile for errors only, and a very short polling interval:

huey_consumer.py my.app.huey -l /var/log/app.huey.log -w 8 -b 1.1 -m 1.0

Running single-threaded without a crontab and logging to stdout:

huey_consumer.py my.app.huey -v -n

1.4.2 Consumer Internals

The consumer is composed of 3 types of threads:

• Worker threads

• Scheduler

• Periodic task scheduler (optional)

These threads coordinate the receipt, execution and scheduling of various tasks. What happens when you call a
decorated function in your application?

1. You call a function – huey has decorated it, which triggers a message being put into the queue. At this point
your application returns. If you are using a “data store”, then you will be return an AsyncData object.

2. In a separate process, the consumer will be listening for new messages – one of the worker threads will pull
down the message. If your backend supports blocking, it will block until a new message is available, otherwise
it will poll.

1.4. Consuming Tasks 15

huey Documentation, Release 0.4.9

3. The worker looks at the message and checks to see if it can be run (i.e., was this message “revoked”? Is it
scheduled to actually run later?). If it is revoked, the message is thrown out. If it is scheduled to run later, it gets
added to the schedule. Otherwise, it is executed.

4. The worker thread executes the task. If the task finishes, any results are published to the result store (if one is
configured). If the task fails and can be retried, it is either enqueued or added to the schedule (which happens if
a delay is specified between retries).

While all this is going on, the Scheduler thread is continually looking at its schedule to see if any commands are ready
to be executed. If a command is ready to run, it is enqueued and will be processed by the Message receiver thread.

Similarly, the Periodic task thread will run every minute to see if there are any regularly-scheduled tasks to run at that
time. Those tasks will be enqueued and processed by the Message receiver thread.

When the consumer is shut-down (SIGTERM) it will save the schedule and finish any jobs that are currently being
worked on.

1.4.3 Consumer Event Emitter

If you specify a RedisEventEmitter when setting up your Huey instance (or if you choose to use RedisHuey),
the consumer will publish real-time events about the status of various tasks. You can subscribe to these events in your
own application.

When an event is emitted, the following information is provided (serialized as JSON):

• status: a String indicating what type of event this is.

• id: the UUID of the task.

• task: a user-friendly name indicating what type of task this is.

• retries: how many retries the task has remaining.

• retry_delay: how long to sleep before retrying the task in event of failure.

• execute_time: A unix timestamp indicating when the task is scheduled to execute (this may be None).

• error: A boolean value indicating if there was an error.

• traceback: A string traceback of the error, if one occurred.

The following events are emitted by the consumer:

• enqueued: sent when a task is enqueued.

• scheduled: sent when a task is added to the schedule for execution in the future.

• revoked: sent when a task is not executed because it has been revoked.

• started: sent when a worker thread begins executing a task.

• finished: sent when a worker thread finishes executing a task and has stored the result.

• error: sent when an exception occurs while executing a task.

• retrying: sent when retrying a task that failed.

1.5 Understanding how tasks are imported

Behind-the-scenes when you decorate a function with task() or periodic_task(), the function registers itself
with a centralized in-memory registry. When that function is called, a reference is put into the queue (among other

16 Chapter 1. Huey’s API

huey Documentation, Release 0.4.9

things), and when that message is consumed the function is then looked-up in the consumer’s registry. Because of the
way this works, it is strongly recommended that all decorated functions be imported when the consumer starts up.

Note: If a task is not recognized, the consumer will throw a QueueException

The consumer is executed with a single required parameter – the import path to a Huey object. It will import the
object along with anything else in the module – thus you must be sure imports of your tasks should also occur with
the import of the Huey object.

1.5.1 Suggested organization of code

Generally, I structure things like this, which makes it very easy to avoid circular imports. If it looks familiar, that’s
because it is exactly the way the project is laid out in the getting started guide.

• config.py, the module containing the Huey object.

config.py
from huey import RedisHuey

huey = RedisHuey('testing', host='localhost')

• tasks.py, the module containing any decorated functions. Imports the huey object from the config.py
module:

tasks.py
from config import huey

@huey.task()
def count_beans(num):

print 'Counted %s beans' % num

• main.py / app.py, the “main” module. Imports both the config.py module and the tasks.py module.

main.py
from config import huey # import the "huey" object.
from tasks import count_beans # import any tasks / decorated functions

if __name__ == '__main__':
beans = raw_input('How many beans? ')
count_beans(int(beans))
print 'Enqueued job to count %s beans' % beans

To run the consumer, point it at main.huey, in this way everything gets imported correctly:

$ huey_consumer.py main.huey

1.6 Troubleshooting and Common Pitfalls

This document outlines some of the common pitfalls you may encounter when getting set up with huey. It is arranged
in a problem/solution format.

Tasks not running First step is to increase logging verbosity by running the consumer with --verbose. You can
also specify a logfile using the --logfile option.

1.6. Troubleshooting and Common Pitfalls 17

huey Documentation, Release 0.4.9

Check for any exceptions. The most common cause of tasks not running is that they are not being loaded, in
which case you will see QueueException “XXX not found in TaskRegistry” errors.

“QueueException: XXX not found in CommandRegistry” in log file Exception occurs when a task is called by a
task producer, but is not imported by the consumer. To fix this, ensure that by loading the Huey object, you
also import any decorated functions as well.

For more information on how tasks are imported, see the docs

“Error importing XXX” when starting consumer This error message occurs when the module containing the con-
figuration specified cannot be loaded (not on the pythonpath, mistyped, etc). One quick way to check is to open
up a python shell and try to import the configuration.

Example syntax: huey_consumer.py main_module.huey

Tasks not returning results Ensure that you have specified a result_store when creating your Huey object.

Periodic tasks are being executed multiple times per-interval If you are running multiple consumer processes, it
means that more than one of them is also enqueueing periodic tasks. To fix, only run one consumer with
--periodic and run the others with --no-periodic.

Scheduled tasks are not being run at the correct time Check the time on the server the consumer is running on -
if different from the producer this may cause problems. By default all local times are converted to UTC when
calling .schedule(), and the consumer runs in UTC.

1.7 Using Huey with Django

Huey comes with special integration for use with the Django framework. This is to accomodate:

1. Configuring your queue and consumer via django settings module.

2. Run the consumer as a management command.

1.7.1 Apps

huey.djhuey must be included in the INSTALLED_APPS within the Django settings.py file.

INSTALLED_APPS = (
'huey.djhuey',
...

1.7.2 Huey Settings

Note: Huey settings are optional. If not provided, Huey will default to using Redis running locally.

All configuration is kept in settings.HUEY. Here are some examples:

Using redis

HUEY = {
'backend': 'huey.backends.redis_backend', # required.
'name': 'unique name',
'connection': {'host': 'localhost', 'port': 6379},
'always_eager': False, # Defaults to False when running via manage.py run_huey

Options to pass into the consumer when running ``manage.py run_huey``

18 Chapter 1. Huey’s API

huey Documentation, Release 0.4.9

'consumer_options': {'workers': 4},
}

Using sqlite.

HUEY = {
'backend': 'huey.backends.sqlite_backend', # required.
'name': 'unique name',
'connection': {'location': 'sqlite filename'},
'always_eager': False, # Defaults to False when running via manage.py run_huey

Options to pass into the consumer when running ``manage.py run_huey``
'consumer_options': {'workers': 4},

}

You can use the ‘default’ sqlite database by seting the filename to DATABASE[’default’][’NAME’] A database
file will automaticly be created using the value of ‘location‘

1.7.3 Running the Consumer

To run the consumer, use the run_huey management command. This command will automatically import any mod-
ules in your INSTALLED_APPS named “tasks.py”. The consumer can be configured by the consumer_options
settings.

In addition to the consumer_options, you can also pass some options to the consumer at run-time.

-w, --workers Number of worker threads.

-p, --periodic Indicate that this consumer process should start a thread dedicated to enqueueing “periodic” tasks
(crontab-like functionality). This defaults to True, so should not need to be specified in practice.

-n, --no-periodic Indicate that this consumer process should not enqueue periodic tasks.

For more information, check the consumer docs.

1.7.4 Task API

The task API is a little bit simplified for Django. The function decorators are available in the huey.djhuey module.

Here is how you might create two tasks:

from huey.djhuey import crontab, periodic_task, task

@task()
def count_beans(number):

print '-- counted %s beans --' % number
return 'Counted %s beans' % number

@periodic_task(crontab(minute='*/5'))
def every_five_mins():

print 'Every five minutes this will be printed by the consumer'

Tasks that execute queries

If you plan on executing queries inside your task, it is a good idea to close the connection once your task finishes.
To make this easier, huey provides a special decorator to use in place of task and periodic_task which will
automatically close the connection for you.

1.7. Using Huey with Django 19

huey Documentation, Release 0.4.9

from huey.djhuey import crontab, db_periodic_task, db_task

@db_task()
def do_some_queries():

This task executes queries. Once the task finishes, the connection
will be closed.

@db_periodic_task(crontab(minute='*/5'))
def every_five_mins():

This is a periodic task that executes queries.

1.8 Huey’s API

Most end-users will interact with the API using the two decorators:

• Huey.task()

• Huey.periodic_task()

The API documentation will follow the structure of the huey API, starting with the highest-level interfaces (the deco-
rators) and eventually discussing the lowest-level interfaces, the BaseQueue and BaseDataStore objects.

1.8.1 Function decorators and helpers

class Huey(queue[, result_store=None[, schedule=None[, events=None[, store_none=False[, al-
ways_eager=False]]]]])

Huey executes tasks by exposing function decorators that cause the function call to be enqueued for execution
by the consumer.

Typically your application will only need one Huey instance, but you can have as many as you like – the only
caveat is that one consumer process must be executed for each Huey instance.

Parameters

• queue – a queue instance, e.g. RedisQueue.

• result_store – a place to store results and the task schedule, e.g. RedisDataStore.

• schedule – scheduler implementation, e.g. an instance of RedisSchedule.

• events – event emitter implementation, e.g. an instance of RedisEventEmitter.

• store_none (boolean) – Flag to indicate whether tasks that return None should store
their results in the result store.

• always_eager – Useful for testing, this will execute all tasks immediately, without en-
queueing them.

Example usage:

from huey.api import Huey, crontab
from huey.backends.redis_backend import RedisBlockingQueue, RedisDataStore,\

RedisSchedule

huey = RedisHuey('my-app')

THIS IS EQUIVALENT TO ABOVE CODE:
#queue = RedisBlockingQueue('my-app')

20 Chapter 1. Huey’s API

huey Documentation, Release 0.4.9

#result_store = RedisDataStore('my-app')
#schedule = RedisSchedule('my-app')
#huey = Huey(queue, result_store, schedule)

@huey.task()
def slow_function(some_arg):

... do something ...
return some_arg

@huey.periodic_task(crontab(minute='0', hour='3'))
def backup():

do a backup every day at 3am
return

task([retries=0[, retry_delay=0[, retries_as_argument=False[, include_task=False]]]])
Function decorator that marks the decorated function for processing by the consumer. Calls to the deco-
rated function will do the following:

1.Serialize the function call into a message suitable for storing in the queue

2.Enqueue the message for execution by the consumer

3.If a result_store has been configured, return an AsyncData instance which can retrieve the
result of the function, or None if not using a result store.

Note: Huey can be configured to execute the function immediately by instantiating it with
always_eager = True – this is useful for running in debug mode or when you do not wish to run the
consumer.

Here is how you might use the task decorator:

assume that we've created a huey object
from huey import RedisHuey

huey = RedisHuey()

@huey.task()
def count_some_beans(num):

do some counting!
return 'Counted %s beans' % num

Now, whenever you call this function in your application, the actual processing will occur when the con-
sumer dequeues the message and your application will continue along on its way.

Without a result store:

>>> res = count_some_beans(1000000)
>>> res is None
True

With a result store:

>>> res = count_some_beans(1000000)
>>> res
<huey.api.AsyncData object at 0xb7471a4c>
>>> res.get()
'Counted 1000000 beans'

Parameters

1.8. Huey’s API 21

huey Documentation, Release 0.4.9

• retries (int) – number of times to retry the task if an exception occurs

• retry_delay (int) – number of seconds to wait between retries

• retries_as_argument (boolean) – whether the number of retries should be passed
in to the decorated function as an argument.

• include_task (boolean) – whether the task instance itself should be passed in to the
decorated function as the task argument.

Return type decorated function

The return value of any calls to the decorated function depends on whether the Huey instance is configured
with a result_store. If a result store is configured, the decorated function will return an AsyncData
object which can fetch the result of the call from the result store – otherwise it will simply return None.

The task decorator also does one other important thing – it adds a special function onto the decorated
function, which makes it possible to schedule the execution for a certain time in the future:

{decorated func}.schedule(args=None, kwargs=None, eta=None, delay=None, convert_utc=True)
Use the special schedule function to schedule the execution of a queue task for a given time in the
future:

import datetime

get a datetime object representing one hour in the future
in_an_hour = datetime.datetime.now() + datetime.timedelta(seconds=3600)

schedule "count_some_beans" to run in an hour
count_some_beans.schedule(args=(100000,), eta=in_an_hour)

another way of doing the same thing...
count_some_beans.schedule(args=(100000,), delay=(60 * 60))

Parameters
• args – arguments to call the decorated function with
• kwargs – keyword arguments to call the decorated function with
• eta (datetime) – the time at which the function should be executed
• delay (int) – number of seconds to wait before executing function
• convert_utc – whether the eta should be converted from local time to UTC, de-

faults to True
Return type like calls to the decorated function, will return an AsyncData object if a result

store is configured, otherwise returns None

{decorated func}.call_local
Call the @task-decorated function without enqueueing the call. Or, in other words,
call_local() provides access to the actual function.

>>> count_some_beans.call_local(1337)
'Counted 1337 beans'

{decorated func}.task_class
Store a reference to the task class for the decorated function.

>>> count_some_beans.task_class
tasks.queuecmd_count_beans

22 Chapter 1. Huey’s API

huey Documentation, Release 0.4.9

periodic_task(validate_datetime)
Function decorator that marks the decorated function for processing by the consumer at a specific inter-
val. Calls to functions decorated with periodic_task will execute normally, unlike task(), which
enqueues tasks for execution by the consumer. Rather, the periodic_task decorator serves to mark a
function as needing to be executed periodically by the consumer.

Note: By default, the consumer will execute periodic_task functions. To disable this, run the
consumer with -n or --no-periodic.

The validate_datetime parameter is a function which accepts a datetime object and returns a
boolean value whether or not the decorated function should execute at that time or not. The consumer
will send a datetime to the function every minute, giving it the same granularity as the linux crontab,
which it was designed to mimic.

For simplicity, there is a special function crontab(), which can be used to quickly specify intervals at
which a function should execute. It is described below.

Here is an example of how you might use the periodic_task decorator and the crontab helper:

from huey import crontab
from huey import RedisHuey

huey = RedisHuey()

@huey.periodic_task(crontab(minute='*/5'))
def every_five_minutes():

this function gets executed every 5 minutes by the consumer
print "It's been five minutes"

Note: Because functions decorated with periodic_task are meant to be executed at intervals in
isolation, they should not take any required parameters nor should they be expected to return a meaningful
value. This is the same regardless of whether or not you are using a result store.

Parameters validate_datetime – a callable which takes a datetime and returns a
boolean whether the decorated function should execute at that time or not

Return type decorated function

Like task(), the periodic task decorator adds several helpers to the decorated function. These helpers
allow you to “revoke” and “restore” the periodic task, effectively enabling you to pause it or prevent its
execution.

{decorated_func}.revoke([revoke_until=None[, revoke_once=False]])
Prevent the given periodic task from executing. When no parameters are provided the function will
not execute again.

This function can be called multiple times, but each call will overwrite the limitations of the previous.
Parameters

• revoke_until (datetime) – Prevent the execution of the task until the given datetime.
If None it will prevent execution indefinitely.

• revoke_once (bool) – If True will only prevent execution the next time it would
normally execute.

skip the next execution
every_five_minutes.revoke(revoke_once=True)

pause the command indefinitely

1.8. Huey’s API 23

huey Documentation, Release 0.4.9

every_five_minutes.revoke()

pause the command for 24 hours
every_five_minutes.revoke(datetime.datetime.now() + datetime.timedelta(days=1))

{decorated_func}.is_revoked([dt=None])
Check whether the given periodic task is revoked. If dt is specified, it will check if the task is revoked
for the given datetime.

Parameters dt (datetime) – If provided, checks whether task is revoked at the given date-
time

{decorated_func}.restore()
Clears any revoked status and run the task normally

If you want access to the underlying task class, it is stored as an attribute on the decorated function:

{decorated_func}.task_class
Store a reference to the task class for the decorated function.

crontab(month=’*’, day=’*’, day_of_week=’*’, hour=’*’, minute=’*’)
Convert a “crontab”-style set of parameters into a test function that will return True when a given datetime
matches the parameters set forth in the crontab.

Acceptable inputs:

•“*” = every distinct value

•“*/n” = run every “n” times, i.e. hours=’*/4’ == 0, 4, 8, 12, 16, 20

•“m-n” = run every time m..n

•“m,n” = run on m and n

Return type a test function that takes a datetime and returns a boolean

1.8.2 AsyncData

class AsyncData(huey, task)
Although you will probably never instantiate an AsyncData object yourself, they are returned by any calls to
task() decorated functions (provided that “huey” is configured with a result store). The AsyncData talks to
the result store and is responsible for fetching results from tasks. Once the consumer finishes executing a task,
the return value is placed in the result store, allowing the producer to retrieve it.

Working with the AsyncData class is very simple:

>>> from main import count_some_beans
>>> res = count_some_beans(100)
>>> res # what is "res" ?
<huey.queue.AsyncData object at 0xb7471a4c>

>>> res.get() # get the result of this task, assuming it executed
'Counted 100 beans'

What happens when data isn’t available yet? Let’s assume the next call takes about a minute to calculate:

>>> res = count_some_beans(10000000) # let's pretend this is slow
>>> res.get() # data is not ready, so returns None

>>> res.get() is None # data still not ready
True

24 Chapter 1. Huey’s API

huey Documentation, Release 0.4.9

>>> res.get(blocking=True, timeout=5) # block for 5 seconds
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/home/charles/tmp/huey/src/huey/huey/queue.py", line 46, in get

raise DataStoreTimeout
huey.exceptions.DataStoreTimeout

>>> res.get(blocking=True) # no timeout, will block until it gets data
'Counted 10000000 beans'

get([blocking=False[, timeout=None[, backoff=1.15[, max_delay=1.0[, revoke_on_timeout=False]]
]]])
Attempt to retrieve the return value of a task. By default, it will simply ask for the value, returning None if
it is not ready yet. If you want to wait for a value, you can specify blocking = True – this will loop,
backing off up to the provided max_delay until the value is ready or until the timeout is reached. If
the timeout is reached before the result is ready, a DataStoreTimeout exception will be raised.

Parameters

• blocking – boolean, whether to block while waiting for task result

• timeout – number of seconds to block for (used with blocking=True)

• backoff – amount to backoff delay each time no result is found

• max_delay – maximum amount of time to wait between iterations when attempting to
fetch result.

• revoke_on_timeout (bool) – if a timeout occurs, revoke the task

revoke()
Revoke the given task. Unless it is in the process of executing, it will be revoked and the task will not run.

in_an_hour = datetime.datetime.now() + datetime.timedelta(seconds=3600)

run this command in an hour
res = count_some_beans.schedule(args=(100000,), eta=in_an_hour)

oh shoot, I changed my mind, do not run it after all
res.revoke()

restore()
Restore the given task. Unless it has already been skipped over, it will be restored and run as scheduled.

1.8.3 Queues and DataStores

Huey communicates with two types of data stores – queues and datastores. Thinking of them as python datatypes, a
queue is sort of like a list and a datastore is sort of like a dict. Queues are FIFOs that store tasks – producers put
tasks in on one end and the consumer reads and executes tasks from the other. DataStores are key-based stores that
can store arbitrary results of tasks keyed by task id. DataStores can also be used to serialize task schedules so in the
event your consumer goes down you can bring it back up and not lose any tasks that had been scheduled.

Huey, like just about a zillion other projects, uses a “pluggable backend” approach, where the interface is defined on a
couple classes BaseQueue and BaseDataStore, and you can write an implementation for any datastore you like.
The project ships with backends that talk to redis, a fast key-based datastore, but the sky’s the limit when it comes to
what you want to interface with. Below is an outline of the methods that must be implemented on each class.

1.8. Huey’s API 25

http://redis.io

huey Documentation, Release 0.4.9

Base classes

class BaseQueue(name, **connection)
Queue implementation – any connections that must be made should be created when instantiating this class.

Parameters

• name – A string representation of the name for this queue

• connection – Connection parameters for the queue

blocking = False
Whether the backend blocks when waiting for new results. If set to False, the backend will be polled at
intervals, if True it will read and wait.

write(data)
Write data to the queue - has no return value.

Parameters data – a string

read()
Read data from the queue, returning None if no data is available – an empty queue should not raise an
Exception!

Return type a string message or None if no data is present

remove(data)
Remove all instances of given data from queue, returning number removed

Parameters data (string) –

Return type number of instances removed

flush()
Optional: Delete everything in the queue – used by tests

__len__()
Optional: Return the number of items in the queue – used by tests

class BaseDataStore(name, **connection)
Data store implementation – any connections that must be made should be created when instantiating this class.

Parameters

• name – A string representation of the name for this data store

• connection – Connection parameters for the data store

put(key, value)
Store the value using the key as the identifier

peek(key)
Retrieve the value stored at the given key, returns a special value EmptyData if nothing exists at the
given key.

get(key)
Retrieve the value stored at the given key, returns a special value EmptyData if no data exists at the
given key. This is to differentiate between “no data” and a stored None value.

Warning: After a result is fetched it will be removed from the store!

flush()
Remove all keys

26 Chapter 1. Huey’s API

huey Documentation, Release 0.4.9

class BaseSchedule(name, **connection)
Schedule tasks, should be able to efficiently find tasks that are ready for execution.

add(data, timestamp)
Add the timestamped data (a serialized task) to the task schedule.

read(timestamp)
Return all tasks that are ready for execution at the given timestamp.

flush()
Remove all tasks from the schedule.

class BaseEventEmitter(channel, **connection)
A send-and-forget event emitter that is used for sending real-time updates for tasks in the consumer.

emit(data)
Send the data on the specified channel.

Redis implementation

All the following use the python redis driver written by Andy McCurdy.

class RedisQueue(name, **connection)
Does a simple RPOP to pull messages from the queue, meaning that it polls.

Parameters

• name – the name of the queue to use

• connection – a list of values passed directly into the redis.Redis class

class RedisBlockingQueue(name, read_timeout=None, **connection)
Does a BRPOP to pull messages from the queue, meaning that it blocks on reads. By default Huey will block
forever waiting for a message, but if you want, you can specify a timeout in seconds. This may prevent the
consumer from getting hung waiting on tasks in the event of network disruptions or similar quirks.

Parameters

• name – the name of the queue to use

• read_timeout (int) – limit blocking pop to read_timeout seconds.

• connection – a list of values passed directly into the redis.Redis class

class RedisDataStore(name, **connection)
Stores results in a redis hash using HSET, HGET and HDEL

Parameters

• name – the name of the data store to use

• connection – a list of values passed directly into the redis.Redis class

class RedisSchedule(name, **connection)

Uses sorted sets to efficiently manage a schedule of timestamped tasks.

param name the name of the data store to use

param connection a list of values passed directly into the redis.Redis class

class RedisEventEmitter(channel, **connection)
Uses Redis pubsub to emit json-serialized updates about tasks in real-time.

Parameters

1.8. Huey’s API 27

https://github.com/andymccurdy/redis-py

huey Documentation, Release 0.4.9

• channel – the channel to send messages on.

• connection – values passed directly to the redis.Redis class.

28 Chapter 1. Huey’s API

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

29

huey Documentation, Release 0.4.9

30 Chapter 2. Indices and tables

Index

Symbols
__len__() (BaseQueue method), 26

A
add() (BaseSchedule method), 27
AsyncData (built-in class), 24

B
BaseDataStore (built-in class), 26
BaseEventEmitter (built-in class), 27
BaseQueue (built-in class), 26
BaseSchedule (built-in class), 26

C
crontab() (built-in function), 24

E
emit() (BaseEventEmitter method), 27

F
flush() (BaseDataStore method), 26
flush() (BaseQueue method), 26
flush() (BaseSchedule method), 27

G
get() (AsyncData method), 25
get() (BaseDataStore method), 26

H
Huey (built-in class), 20

P
peek() (BaseDataStore method), 26
periodic_task() (Huey method), 22
put() (BaseDataStore method), 26

R
read() (BaseQueue method), 26
read() (BaseSchedule method), 27

RedisBlockingQueue (built-in class), 27
RedisDataStore (built-in class), 27
RedisQueue (built-in class), 27
RedisSchedule (built-in class), 27
RedisSchedule.RedisEventEmitter (built-in class), 27
remove() (BaseQueue method), 26
restore() (AsyncData method), 25
revoke() (AsyncData method), 25

T
task() (Huey method), 21

W
write() (BaseQueue method), 26

31

	Huey's API
	Installing
	Upgrading
	Getting Started
	Consuming Tasks
	Understanding how tasks are imported
	Troubleshooting and Common Pitfalls
	Using Huey with Django
	Huey's API

	Indices and tables

